Genetic diversity and population structure of Raffaelea quercus-mongolicae, a fungus associated with oak mortality in South Korea.
نویسندگان
چکیده
Raffaelea quercus-mongolicae is a fungus associated with oak wilt and deemed to cause extensive oak mortality in South Korea. Since the discovery of this fungus on a dead Mongolian oak (Quercus mongolica) in 2004, the mortality continued to spread southwards in South Korea. Despite continued expansion of the disease and associated significant impacts on forest ecosystems, information is lacking about the origin and genetic diversity of R. quercus-mongolicae. Restriction-site-Associated DNA (RAD) sequencing was used to assess genetic diversity and population structure among five populations (provinces) of R. quercus-mongolicae in South Korea. In total, 179 single nucleotide polymorphisms (SNPs) were identified among 2,639 RAD loci across the nuclear genome of the 54 R. quercus-mongolicae isolates (0.0012 SNPs per bp), which displayed an overall low expected heterozygosity and no apparent population structure. The low genetic diversity and no apparent population structure among South Korean populations of this ambrosia beetle-vectored fungus supports the hypothesis that this fungus was introduced to South Korea.
منابع مشابه
Draft Genome Sequence of the Fungus Associated with Oak Wilt Mortality in South Korea, Raffaelea quercus-mongolicae KACC44405
The fungus Raffaelea quercus-mongolicae is the causal agent of Korean oak wilt, a disease associated with mass mortality of oak trees (e.g., Quercus spp.). The fungus is vectored and dispersed by the ambrosia beetle, Platypus koryoensis Here, we present the 27.0-Mb draft genome sequence of R. quercus-mongolicae strain KACC44405.
متن کاملYeast Associated with the Ambrosia Beetle, Platypus koryoensis, the Pest of Oak Trees in Korea
Oak tree death caused by symbiosis of an ambrosia beetle, Platypus koryoensis, and an ophiostomatoid filamentous fungus, Raffaelea quercus-mongolicae, has been a nationwide problem in Korea since 2004. In this study, we surveyed the yeast species associated with P. koryoensis to better understand the diversity of fungal associates of the beetle pest. In 2009, a total of 195 yeast isolates were ...
متن کاملThe Effect of Raffaelea quercus-mongolicae Inoculations on the Formation of Non-conductive Sapwood of Quercus mongolica
In Korea, mass mortality of Quercus mongolica trees has become obvious since 2004. Raffaelea quercus-mongolicae is believed to be a causal fungus contributing the mortality. To evaluate the pathogenicity of the fungus to the trees, the fungus was multiple- and single-inoculated to the seedlings and twigs of the mature trees, respectively. In both the inoculations, the fungus was reisolated from...
متن کاملAttack pattern of Platypus koryoensis (Coleoptera: Curculionidae: Platypodinae) in relation to crown dieback of Mongolian oak in Korea.
The ambrosia beetle, Platypus koryoensis (Murayama), vectors the Korean oak wilt (KOW) pathogen, Raffaelea quercus-mongolicae K.H. Kim, Y.J. Choi, & H.D. Shin, in Korea, which is highly lethal to Mongolian oak, Quercus mongolica Fisch., and is considered a major threat to forest ecosystem health. We characterized the attack pattern of P. koryoensis along the lower trunk of 240 Mongolian oaks i...
متن کاملLandscape-level spatial genetic structure in Quercus acutissima (Fagaceae).
Quercus acutissima (Fagaceae), a deciduous broad-leaved tree, is an important forest element in hillsides of South Korea. We used allozyme loci, Wright's F statistics, and multilocus spatial autocorrelation statistics to examine the distribution of genetic diversity within and among three local populations and the spatial genetic structure at a landscape scale (15 ha, 250 × 600 m) on Oenaro Isl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Forest pathology
دوره 46 2 شماره
صفحات -
تاریخ انتشار 2016